
Computer vision and cognitive systems approaches
in the Galleria Estense Museum

Gianluca Mancusi
228614@studenti.unimore.it

Daniele Manicardi
227246@studenti.unimore.it

Vittorio Pippi
219424@studenti.unimore.it

Abstract

The aim of this report is to describe a computer vision
software able to analyze images and videos taken from the
Galleria Estense Museum in Modena. The final result is
intended to guarantee total hardware accessibility, thus im-
posing a low use of resources as main technical constraint.

1. Introduction
The project aims to provide an application capable of

processing artistic images and videos, taken from the Galle-
ria Estense in Modena. Specifically, the basic implemented
functionalities are:

1. Painting detection: consists in automatically comput-
ing the bounding-boxes of the pictures contained in an
image. The functionality can be easily extended to a
video by iterating the algorithm on all the frames com-
posing it.

2. Painting rectification: once having isolated the picture
through the previous step, the goal is to correct its per-
spective, displaying it frontally.

3. Painting retrieval: given a rectified painting, the al-
gorithm must automatically determine its title using a
pre-built paintings’ dataset.

4. People detection: it’s the same type of detection de-
scribed in the first step, but here people are the target.

5. People localization: starting from the detection per-
formed through the fourth step, the goal is to determine
the room in which that person lays.

Being the most important step as it influences all the oth-
ers, this work initially focused completely on painting de-
tection. The pipeline described in the document has been
further divided into equal parts. Once finished and refined,
everyone dedicated themselves to the implementation and
research about a particular feature, not excluding a mutual
adjustment and improvement with the collaborators.

Figure 1. Example of the final result of our image processing
pipeline using standard computer vision techniques. The image
is undistorted, the paintings have been detected and recognized.
The room has also been localized.

2. Related works

In order to develop a high quality project it is always a
good idea to study what has already been done, in a way
to have a hint of the best techniques applied up until that
moment. Starting from that point the decision that can be
made is to reinvent the wheel or improve what has already
been done. On the internet there are several works on paint-
ing detection and retrieval, most of them use OpenCV, but
it’s curious how the techniques and approaches are totally
different.

A straightforward approach is to use a convolutional neu-
ral network for object detection such as YOLOv3 [9] or
Faster R-CNN [10]. The result is guaranteed, but for ed-
ucational purposes we decided to continue with traditional
techniques, which as an advantage do not require a dataset.
In any case, to avoid depriving ourselves of modern ap-
proaches we decided to experiment U-Net [11] in order to
perform segmentation on the paintings. Going back to the
classic computer vision, several jobs have been done in the
past, let’s see for example the case of [2] where the tech-
nique is to apply a gaussian blur and then work on the edges
and contours to perform detection, finally applying SIFT for
retrieval. Another outstanding work is [1] which focuses

1



on segmenting the paintings using contours and generating
bounding boxes. It also transforms the boxes into a standard
format and then applies the retrieval phase with ORB.

Other works focus strongly on the edges of the boxes for
detection and apply preprocessing filters in order to have a
qualitative result, like [5] which is only able to recognize
rectangular boxes.

A more general approach that we found useful, because
it applies the transformations and operations from an un-
conventional point of view, is [8] that particularly surprised
us in the operations carried out in the first stages, where it
works with the background of the paintings rather than with
the foreground. We will take this idea, which we believe is
also able to generalize well the shape of the paintings. Pre-
cisely because it does not need to know a priori what the
shape of the paintings is like, but assumes that there is a
uniform background behind the painting.

It is well known that most image processing operations
suffer from camera lens distortion. There are various ap-
proaches to calibrate the camera: the most classic one is
using a chessboard. Since the museum videos are not ours
and we should not know how they were recorded, the chess-
board is not a viable approach. One of the automatic ap-
proaches used in the literature is [3], which we found in-
teresting due to the way it increases the number of lines in
the frame through the Hough Transform. That is why we
implemented it in the project.

For the painting rectification step there were several
works. The rectification of a painting can be solved by tak-
ing the four corners of the painting and estimating the ho-
mography to make the image rectified. This procedure is
explained in the work Whiteboard Scanning and Image En-
hancement [13] that in addition to adjustments to improve
a whiteboard, also rectifies it. We used this work for our
purpose.

3. The approach
Working on the project, we have taken into account all

the related works already done in the past and we have in-
troduced a series of improvements to the several steps of the
pipeline.

3.1. Camera calibration

First of all, we try to correct the image distortion auto-
matically using our implementation of the HTRDC algo-
rithm shown in [3]. The only change we made to the al-
gorithm is to apply hough by focusing on vertical and hor-
izontal lines in order to reduce, at least partially, the noise
generated by curved lines.

3.2. Paintings detection

As already mentioned, the approach which inspired us
the most is to separate the paintings from the background

(a) Original (b) Corrected image

Figure 2. The original image on the left and HTRDC-corrected one
on the right.

with various techniques, analyzing each foreground object
found later. Obviously this approach makes the assump-
tion that the background is sufficiently homogeneous, the
camera is not too close to the picture, and paintings’ frames
are well shaped and properly separate the painting from the
background.

To allow every member of the team to work simultane-
ously, we have divided the pipeline into 6 macrosections

3.2.1 Pre-processing

We have applied a mean-shift filter in order to ”flatten” the
background colors. This is really important since it will
facilitate detection in the next sections, providing an im-
age less noisy and more homogeneous but still having sharp
edges.

3.2.2 Background detection

We applied OpenCV’s floodFill function, which selects all
pixels that are similar and contiguous to the starting one fol-
lowing a fixed tolerance. In this way, once one of the pixels
in the background has been chosen as the starting point, the
selection will spread a white area throughout the involved
image portion. The frames of the paintings are really im-
portant to discriminate the background from the foreground.
In this way, trying multiple points we determine the back-
ground mask as the largest selection found.

3.2.3 Cleaning

Once the background mask has been retrieved, we clean the
image by performing a closing operation, aiming to clean
the foreground from small details like paintings’ labels or
frame discontinuities. Then, the image is inverted and a
constant-black padding around it is applied. The purpose of
padding is to add a black border around the paintings that
are not completely wrapped inside the image. This is very
helpful to identify the borders of such cut pictures through
the Hough transform. In the Figure (3d) we voluntarily ap-
plied a thicker padding to make it clearly visible, but a 1-
pixel padding is enough for a more concrete context.

2



(a) Original frame (b) Mean-shift filtering (c) Background detection (d) Cleaning and invert (e) Find contours

(f) Contours filtering (g) Cleaning and edge (h) Hough lines detection (i) Corners detection (j) Output

Figure 3. The images reported above represent the most important building blocks of the pipeline. They have just a representative scope:
starting from the 3f step every contour is processed individually

3.2.4 Components selection

Once having created the mask that separates all the elements
from the background, we obtain the paintings’ contours us-
ing the chain code algorithm applied with the findContours
function of OpenCV. In order to clean the image from false
paintings, all the areas not respecting the following con-
straints are discarded:

• The size of the retrieved rectangle must be above or
equal a fixed threshold.

• The retrieved area must be smaller than 0.9 ×
the whole image area and higher than a fixed thresh-
old.

3.2.5 Contour cleaning and edge detection

Now we need to clean the paintings’ borders and apply an
edge detector. The last one is necessary in order to rectify
the paintings’ lines in the further sections.

The first transformation applied is an opening of the fore-
ground, which removes from the paintings’ areas their own
shadow and part of the frame. Anyway, this operation is
really useful because it removes many parts potentially dis-
turbing the retrieval phase. The chosen algorithm for edge
detection is Canny: the Figure (3g) shows the kind of results
obtained.

As visible, also the paintings partially outside of the im-
age are well localized, thanks to the padding inserted be-
fore.

3.2.6 Corners detection

Once the contours are ready, we use the hough transform to
abstract its border’s shape through vertical and horizontal
straight lines. The intersections between such lines repre-
sent the corners of all the paintings in the image. In order
to assign to each painting its corner group (obviously made

Figure 4. On the left a non-rectangular shape and on the right a
rectangular painting

of 4 points), we apply a k-means algorithm with k = 4.
As visible from Figure (3i), this way of seeing the task as a
clustering problem leads to the expected results. In the fi-
nal step we removed the padding and we achieved the result
shown in Figure (3j).

3.2.7 Non-rectangular shapes

In some cases it may happen that the picture does not
have the classic rectangular shape or, for some reasons, the
corners-retrieval steps failed. In such cases, the output will
consist of the four corners of the bounding rect wrapping
the non-rectangular shape as you can see in the Figure 4.

3.3. Painting rectification

Once the four corners of the paintings have been iden-
tified, they are used to estimate the perspective homogra-
phy transformation for the rectification step. This procedure
is described in [13], which we implemented to identify an
approximation of the original aspect ratio of the picture in
perspective. The [13] paper was written to scan the white-
boards and rectify them. We first estimate the actual aspect
ratio of the painting from the detected quadrangle based on
the fact that it is the projection of a rectangle in space. Be-
sides the aspect ratio, we can also estimate the focal length

3



(a) Original
(b) Image corrected

(c) Original (d) Image corrected

Figure 5. On the left you can see what the pictures look like after
being extracted from the frame of the video, while on the right are
the pictures after being rectified.

of the camera. From the estimated aspect ratio, and by
choosing the “largest” painting pixel as the standard pixel
in the final image (a pixel in the original image should be
mapped to at least one pixel in the rectified image), we can
compute the desired resolution of the final image. A planar
perspective mapping (a 3 x 3 homography matrix) is then
computed from the original image quadrangle to the final
image rectangle, and the painting image is rectified accord-
ingly. The results can be seen in the Figure 5.

3.4. Painting retrieval

Once the painting has been recognized and rectified, we
calculate the descriptors of the rectified painting and we
compare it with the descriptors of all the paintings in the
descriptor database. In fact, we pre-compute all the descrip-
tors of the paintings in the database at the first start of the
painting retrieval step. The painting retrieval function will
give a match only if there is a sufficiently high difference
between the first and the second painting with the highest
scores. The scores are the average of the distances of the
descriptors.

The algorithm used to detect keypoints in the paintings
is ORB [12]. The reason of this choice is that it is a fast al-
gorithm. Moreover, it is easily available on OpenCV, unlike
SIFT [6] which is a proprietary algorithm.

More specifically, before starting the algorithm we
change the resolution of each image in the database in a
standard resolution, empirically chosen at 400x400, and
calculate the descriptor. Then we move to the standard res-
olution and calculate the descriptors of the original image.
At each iteration of painting retrieval we will compare only

Figure 6. The overlay map in bottom left part of the screen. The
recognized and localized room is the red one. In addition, the
picture is undistorted using [3] and the recognized paintings have
the names written on the blue label at the top-left of the frame. The
painting on the left has no label because it is not in the paintings
db.

the descriptors.

3.5. People detection

To detect people in the videos it was straightforward
to use YOLOv3 [9], but there are several fascinating ap-
proaches in the literature, such as RCNN [4] and its faster
variants. We decided to use the state-of-the-art YOLOv3
for its speed, if we had to use a more precise recognition
system, we would have chosen the Faster RCNN [10].

In order not to recognize the people portrayed in the
paintings, we checked whether or not the bounding box of
the recognized person was inside the painting. In such case,
the person is not labeled since it would be a false positive.

3.5.1 Room detection

In order to locate which room the people are in, we have as-
sumed that the videos were all shot in the same room where
the people identified are also in, and that all the people in
the video belong to the same room. So once you have iden-
tified one of the paintings in the video you can go back to
the room where that painting is. To make the result visible,
we decided to print the recognized room on the museum
map. The map is in overlay in the bottom left part of the
screen.

4. Experiments with neural networks

To calculate the effectiveness and metrics of our pipeline
we randomly selected the 10% of all frames extracted from
the videos and segmented them by hand. Having this data
available we did some experiments to see what results could
be obtained.

4



Target Method β α DSC TI IoU Specificity Precision Recall

Paintings

Deterministic - - 0.585 - 0.512 0.804 0.638 0.649

Supervised
(with tiny dataset)

- - 0.475 - 0.35 0.621 0.361 0.880
1e-12 1− β 0.705 0.829 0.583 0.738 0.673 0.829
0.25 1− β 0.668 0.738 0.545 0.705 0.590 0.864
0.5 3 0.699 0.749 0.577 0.727 0.644 0.849

Self-supervised +
fine-tuning

- - 0.716 - 0.601 0.760 0.710 0.811
1e-12 1− β 0.701 0.854 0.584 0.733 0.642 0.854
0.25 1− β 0.766 0.783 0.661 0.802 0.780 0.817
0.5 3 0.780 0.830 0.681 0.811 0.783 0.835

Table 1. Results obtained from all experiments with the U-Net, compared with the deterministic approch

4.1. Architecture

Every test we performed consisted of using a U-Net con-
volutional network [7], which has been configured to do
a background-removal with respect to the objective class
(statue, painting).

4.1.1 Dataset

Since many high-framerate videos were provided, we built
up a training dataset by performing a quantization of such
videos every 45 frames, obtaining 3175 total images. The
statue dataset required a longer time since we had to seg-
ment their shape through the whole dataset, obtaining in the
end 693 samples. Finally, the painting dataset was created
by manually segmenting the 10% of the 3175 total images
randomly sampled.

However, the dataset will contain many frames from the
same videos and therefore the data on which the training is
done are not totally independent.

4.1.2 Data augmentation

For both statue detection and painting detection we tried to
make some data augmentation in order to solve, even if only
partially, the lack of images. In both cases we applied the
following transformations as you can see here in pytorch-
like code:

1 transforms.Compose([
2 ToPILImage(),
3 Resize(512),
4 RandomCrop(512),
5 RandomRotation(),
6 RandomHorizontalFlip(),
7 ColorJitter(0.4, 0.4, 0.4, 0.1),
8 RandomGrayscale(),
9 ToTensor(),

10 ])

After some tests we decided to set the resize and the ran-
dom crop to 512 because larger values have not led to im-

provements but only to a drop in performance. This is prob-
ably due to the fact the image becomes too small and you
have an excessive loss of information.

During testing, we used instead the following transfor-
mations in order to have deterministic results:

1 transforms.Compose([
2 ToPILImage(),
3 Resize(512),
4 CenterCrop(512),
5 ToTensor(),
6 ])

4.1.3 Loss function

Originally we used the Dice Coefficient (DSC) to compare
the results obtained with ground truth. However, as we re-
alized later, the DSC tends to give an inadequate weight to
false positives, so we decided to use Tversky Index (TI),
which is nothing more than a weighted DSC.

DSC =
2TP

2TP + FN + FP
(1)

TI =
TP

TP + βFN + αFP
(2)

Indeed, we now have β = α = 1
2 , and so TI = DSC.

4.2. Painting detection

Durante lo sviluppo della rete neurale per fare paint-
ing detection abbiamo utilizzato due approcci differenti. Il
prima consiste nell’utilizzare il picolissimo dataset che ave-
vamo a disposizione di 317 immagini per allenare la U-
Net in modo supervisionato, ottenendo dei risultati molto
promettenti che tendono ad eguagliare o addirittura superare
il nostro metodo deterministico. Il secondo invece consiste
nel carcare di sfruttare l’intero dataset composto da 3172
immagini e la nostra pipeline per allenare la rete in modo

5



Target Method β α DSC TI IoU Specificity Precision Recall

Statue Supervised

1e-12 1− β 0.302 0.239 0.206 0.946 0.734 0.241
0.25 1− β 0.322 0.335 0.217 0.915 0.471 0.399

- - 0.241 0.243 0.166 0.914 0.406 0.267
0.5 3 0.381 0.177 0.27 0.948 0.696 0.351
0.5 5 0.351 0.182 0.264 0.925 0.508 0.403
1 3 0.286 0.100 0.189 0.934 0.752 0.093
1 5 0.314 0.093 0.217 0.952 0.786 0.266

Table 2. Results obtained from all experiments with the U-Net, compared with the deterministic approch

(a) Source (b) Mask

Figure 7. A segmentation result through the use of the U-Net.

self-supervised e poi effettuare un fine-tuning con le im-
magini sementate a mano. In particolare durante processo
di training self-supervised la U-Net cercherà di predire
l’output della maschera generata dalla pipeline, mentre du-
rante la fase di fine-tuning verrà addestrata la rete utiliz-
zando le label realizzate a mano. Com’è possibile vedere
nella tabella

4.3. Statue detection

During the development of the neural network for the
identification of the statues we had more difficulties in com-
parison to the detection of the paintings. In particular the
problems found are mainly caused by the dataset, which is
too small considering the large variety of statues in the mu-
seum and above all, it is strongly unbalanced. As can be
seen in the table 2 the results obtained are not as promis-
ing as those of the paintings. In the case of the statues we
obtained slightly better results by increasing the values of
α and β in order to give more weight to false positives and
false negatives, which is why the TI values are very low.
In conclusion, having a larger and less unbalanced dataset
would give much better results as in the case of painting
detection.

5. Results

All the results obtained with the experiments have been
summarized in the table 1. In particular, it is interesting to
note, as far as the paintings are concerned, how the models

0 10 20 30

0

0.5

1

Paintings

D
ic

e
co

ef
fic

ie
nt

Figure 8. The Dice coefficient measure applied to our pipeline
compared to ground-truth bounding boxes.

obtain generally better results in all the metrics except for
the specificity that can be matched only by some models
that exploit a self-supervised pre-training.

5.1. Results with painting detection

The results are fluctuating. This is clearly seen in the
Figure 8.

The algorithm works well with certain types of images,
while it fails completely with others. This is justified by
the fact that our pipeline is perceptive for any type of im-
age, without providing any cognitive concept of painting or
statue.

6. Discussion
This work has been a good way for us to perceive the dif-

ference between classic computer vision techniques and the
ones that apply neural networks. Despite the limited data
available for neural networks, we have achieved more than
promising results compared to the pipeline. By dedicating
more time to data recovery and increasing the amount of
data, we would obtain results that would be very difficult to
replicate with traditional algorithms. We also tried tweak-
ing the parameters of the algorithm but it can’t be compared
with the neural network.

6



In the attempts to tweak the parameters we noticed that
standard measurements such as precision, recall, sensitiv-
ity and many more, continued to alternate. So we found a
balance, giving more weight to false positives.

Indeed, the most important objective was to remove the
outliers that can be found, not recognizing them as paint-
ings. Examples of outliers are statues, fire extinguish-
ers, picture labels and much more. Decreasing false pos-
itives means decreasing the number of outliers considered
as paintings.

We also found interesting algorithmic solutions for the
painting rectification step such as [13] that we were able to
implement.

In conclusion using classical algorithms we obtain a con-
siderable saving of computational resources, instead with
deep learning we obtain a strong improvement of gener-
alization capacity, but also a stronger consumption of re-
sources. Using both these techniques allows us to compen-
sate for the weaknesses of one and the other.

References
[1] Timothy Thiecke Bert De Saffel. Continuous room localiza-

tion using painting detection.
[2] Conor Broderick. Robust recognition and identification of

paintings using computer vision techniques.
[3] Rita Cucchiara, Costantino Grana, Andrea Prati, and Roberto

Vezzani. A hough transform-based method for radial lens
distortion correction. pages 182–187, 01 2003.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation, 2013.

[5] Ilya Kavalerov. Using pattern recognition to automatically
crop framed art.

[6] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60:91–110, 2004.

[7] milesial. Unet: semantic segmentation with pytorch.
[8] Geoff Natin. Locating recognising paintings in galleries.
[9] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv, 2018.
[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region
proposal networks, 2015.

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015.

[12] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: an efficient alternative to sift or surf. pages
2564–2571, 11 2011.

[13] Zhengyou Zhang and Li-wei He. Whiteboard scanning and
image enhancement. In Digital Signal Processing, vol-
ume 17, pages 414–432, April 2007.

7


